Transfer of Ideals and Quantization of Small Nilpotent Orbits
نویسنده
چکیده
We introduce and study a transfer map between ideals of the universal enveloping algebras of two members of a reductive dual pair of Lie algebras. Its definition is motivated by the approach to the real Howe duality through the theory of Capelli identities. We prove that this map provides a lower bound on the annihilators of theta lifts of representations with a fixed annihilator ideal. We also show that in the algebraic stable range, transfer respects the class of quantizations of nilpotent orbit closures. As an application, we explicitly describe quantizations of small nilpotent orbits of general linear and orthogonal Lie algebras and give presentations of certain rings of algebraic differential operators. We consider two algebraic versions of Howe duality and reformulate our results in terms of noncommutative Capelli identities.
منابع مشابه
Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits
Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...
متن کاملad-NILPOTENT IDEALS OF A BOREL SUBALGEBRA II
We provide an explicit bijection between the ad-nilpotent ideals of a Borel subalgebra of a simple Lie algebra g and the orbits of Q̌/(h + 1)Q̌ under the Weyl group (Q̌ being the coroot lattice and h the Coxeter number of g). From this result we deduce in a uniform way a counting formula for the ad-nilpotent ideals.
متن کاملGeometric Quantization of Real Minimal Nilpotent Orbits
In this paper, we begin a quantization program for nilpotent orbits OR of a real semisimple Lie group GR. These orbits arise naturally as the coadjoint orbits of GR which are stable under scaling, and thus they have a canonical symplectic structure ω where the GR-action is Hamiltonian. These orbits and their covers generalize the oscillator phase space T R, which occurs here when GR = Sp(2n,R) ...
متن کاملUq(sl(n))-invariant quantization of symmetric coadjoint orbits via reflection equation algebra
We study relations between the two-parameter Uq(sl(n))-invariant deformation quantization on sl∗(n) and the reflection equation algebra. The latter is described by a quantum permutation on End(C) given explicitly. The reflection equation algebra is used for constructing the oneparameter quantization on coadjoint orbits, including symmetric and certain bisymmetric and nilpotent ones. Our approac...
متن کاملUq(sl(n))-covariant quantization of symmetric coadjoint orbits via reflection equation algebra
We study relations between the two-parameter Uq(sl(n))-covariant deformation quantization on sl∗(n) and the reflection equation algebra. The latter is described by a quantum permutation on End(C) given explicitly. The reflection equation algebra is used for constructing the one-parameter quantization on coadjoint orbits, including symmetric, certain bisymmetric and nilpotent ones. Our approach ...
متن کامل